All Issue

2019 Vol.28, Issue 3 Preview Page
September 2019. pp. 415~4365
Abstract
The purpose of this study is to analyze the returns to scale by estimating the bigeye tuna production function of Korean distant longline fisheries in WCFPC waters. In the analysis, number of crews, vessel tonnage, number of hooks, and bigeye tuna biomass are used as input variables and the catch amount of bigeye tuna is used as an output variable in the Cobb-Douglas production function. Prior to the function estimation, the biomass of bigeye tuna was estimated by the Bayesian state-space model. Results showed that the fixed effect model was selected based on the hausman test, and vessel tonnage, hooks, and biomass would have direct effects on the catch amount. In addition, it was shown that the bigeye tuna distant longline fisheries in WCFPC water would have increasing returns to scale.
본 연구의 목적은 중서부태평양(WCPFC) 수역 우리나라 원양연승어업의 눈다랑어 생산함수를 추정하여 규모 수익을 분석하는 것이다. 분석에 있어 투입요소는 선원수, 선박톤수, 투입낚시수, 눈다랑어 자원량 그리고 산출요소는 눈다랑어 생산량으로 하는 Cobb-Douglas 형태의 생산함수를 추정하였다. 함수 추정에 앞서 투입요소 중 눈다랑어 자원량은 Bayesian State-space 모델로 추정하였다. 생산함수 추정 결과, 하우즈만 검정을 통해 고정효과 모델이 선택되었고, 선원수를 제외한 선박톤수, 투입낚시수, 눈다랑어 자원량이 눈다랑어 생산량에 직접적인 영향을 미치는 것으로 나타났다. 추정된 생산함수의 투입요소를 바탕으로 규모 수익 수준을 분석한 결과, WCPFC 수역에서 눈다랑어를 조업하는 원양연승어업은 규모 수익 체증(IRS)의 성격인 것으로 추정되었다.
References
  1. 국립수산과학원, “원양어업조업정보시스템(1992-2017)”.
  2. 김기수‧강용주, “연안어선어업의 생산함수 추정”, 「수산경영론집」, 제24권 제3호, 1993, pp. 69~82.
  3. 김달호, 『R과 WinBUGS를 이용한 베이지안통계학』, 자유아카데미, 2013.
  4. 김원재, “어업생산성 추정을 위한 통계적 응용에 관한 실증 연구”, 「수산경영론집」, 제23권 제2호, 1992, pp. 91~99.
  5. 심성현‧남종오, “근해어업 생산함수 추정을 이용한 규모수익 및 한계생산성 분석”, 「Ocean and Polar Research」,제39권 제4호, 2017, pp. 301~318.
  6. 이미경, “중서부 태평양 수역 우리나라 다랑어 선망어업의 조업 특성 및 대응방안 연구”, 「이학박사 학위 논문, 부경대학교」, 2016, p. 159.
  7. 이희연‧노승철, 『고급통계분석론 –이론과 실습-』, 문우사, 2013.
  8. 해양수산부, 『국제수산기구 업무 편람』, 해양수산부 국제협력총괄과, 2019.
  9. 허수진, “패널회귀분석을 이용한 연근해어업 생산함수추정”, 「경제학석사 학위 논문, 부경대학교」, 2013, p. 70.
  10. Bai, L., J. Cao, and Z. Jiangfeng, “Analyzing population dynamics of Indian Ocean albacore (Thunnus alalunga) using Bayesian state-space production model.” IOTC-2016- WPTmT06-24, 2016, pp. 1~10.
  11. Brodziak, J., and G. Ishimura, “Development of Bayesian production models for assessing the North Pacific swordfish population.” Fish Sci, Vol.77, 2011, pp. 23~34.10.1007/s12562-010-0300-0
  12. Crentsil, C., and I. G. Ukpong, “Production function analysis of fish production in Amansie-West district of Ghana.” West Africa Am J Exp Agr, Vol. 4, No. 7, 2014, pp. 817~835.10.9734/AJEA/2014/8625
  13. Fahrmeir, L., and G. Tutz, “Multi variate statistical modeling based on generalized linear models.” Springer, Newyork, 1994, p. 429.10.1007/978-1-4899-0010-4
  14. Gavaris, S., “Use of a multiplicative model to estimate catch rate and effort from commercial data.” Can J Fish Aquat Sci, Vol. 37, No. 12, 1980, pp. 2272~2275.10.1139/f80-273
  15. Jahanifar, K., Z. Abedi, and Y. Zeraatkish, “Estimation of production function in fishery on the coasts of Caspian Sea.” Int J Biol Biomol Agr Food Biotech Eng, Vol. 4, No. 5, 2010, pp. 276~279.
  16. Liao, B., K. Zhang, X. Shan, X. Chen, A. Baset, K. H. Memon, and Q. Liu, “Application of Bayesian surplus production model and traditional surplus production model on stock assessment of the southern Atlantic albacore (Thunnus alalunga).” Indian Journal of Geo Marine Sciences, Vol. 46, No. 5, 2017, pp. 922~928.
  17. Meyer, R., and R. B. Millar, “BUGS in Bayesian stock assessments.” Can J Fish Aquat Sci, Vol. 56, 1999, pp. 1078~1086.10.1139/f99-043
  18. Millar, R. B., and R. Meyer, “Non linear state space modelling of fisheries biomass dynamics by using Metropolis Hastings within Gibbs sampling.” Journal of the Royal Statistical Society Series C Applied Statistics, Vol. 49, No. 3, 2000, pp. 327~342.10.1111/1467-9876.00195
  19. Myers, R. A., K. G. Bowen, and N. J. Barrowman, “Maximum reproductive rate of fish at low population sizes.” Can J Fish Aquat Sci, Vol. 56, 1999, pp. 2404~2419.10.1139/f99-201
  20. Schaefer, M. B., “Some aspects of the dynamics of populations important to the management of commercial fisheries.” Inter Am Trop Tuna Comm Bull, Vol. 1, No. 2, 1954, pp. 23~56.
  21. WCPFC, “YEARBOOK_2017_XLS,” https://www.wcpfc.int
  22. Winker, H., S. Kerwath, G. Merino, and M. Ortiz, “Bayesian State-space surplus production model JABBA assessment of Atlantic Bigeye tuna (Thunnus obesus) Stock.” ICCAT, SCRS/2018/110, 2019, pp. 1~45.
Information
  • Publisher :Korea Resource Economics Association · Korea Environmental Economics Association
  • Publisher(Ko) :한국자원경제학회·한국환경경제학회
  • Journal Title :Environmental and Resource Economics Review
  • Journal Title(Ko) :자원·환경경제연구
  • Volume : 28
  • No :3
  • Pages :415~4365