All Issue

2021 Vol.30, Issue 3 Preview Page

Research Paper

30 September 2021. pp. 435-469
Abstract
The main purpose of this study is to identify the determinants of electricity import and export in 26 European Union countries using the Spatial durbin model(SDM). In particular, we would like to mainly explain it based on the amount of power generated by each energy source. Not just the usual way of constructing a weighting matrix based on contiguity, we adopt a weighting method based on the proportion of trade among countries with connected electricity systems. Moreover, the electricity systems of European countries are directly and indirectly connected, which is reflected in the weighting matrix. According to the results, nuclear power has a positive effect on exports and a negative effect on imports, and an increase in wind and solar power has a positive effect on both exports and imports by increasing power system instability. While Korea is unable to trade electricity due to geopolitical conditions, the results of this study are expected to provide implications for energy policies.
본 연구에서는 패널 공간더빈모형을 활용하여 유럽연합 회원국 26개 국가의 전력수출입 결정요인을 밝히는 것을 주요 목적으로 하며, 특히 전원별 발전량을 중심으로 설명하고자 한다. 이때 공간더빈모형을 활용함에 있어 단순히 인접기준 혹은 거리에 의해 가중치를 부여하는 방식이 아닌 전력 계통이 연계된 국가 간의 교역 비중을 기준으로 공간가중치 행렬을 구성하고자 한다. 또한 유럽 국가들의 전력계통은 직간접적으로 연결되어 지리적으로 멀리 떨어진 국가들 사이의 상호작용이 가능하므로, 이를 가중치행렬에 반영한다. 이를 바탕으로 분석한 결과, 원자력발전은 수출에는 양의 효과, 수입에는 음의 효과를 미치며 풍력·태양광 발전량의 증가는 전력의 계통 불안정성을 높여 수출과 수입에 모두 양의 효과를 미치는 것으로 분석되었다. 현재 국내의 지리적 여건상 타국과의 전력교역은 어려운 실정이다. 따라서 본 연구의 결과는 국내 에너지믹스 정책에 있어 시사하는 바가 있으며, 이전에 사용되지 않던 방식의 가중치행렬을 이용한 패널 공간더빈모형을 통해 전력수출입 요인을 분석했다는 데 의의가 있다.
References
  1. 김태현‧신한솔‧김형태‧이성우‧한상헌‧김욱, “국가간 계통연계가 우리나라 전력계통 운영에 미치는 영향”, 대한전기학회 2015년도 제46회 하계학술대회, 「대한전기학회」, 2015, pp. 253~254.
  2. 김헌태‧장성수, “3020 신재생에너지 정책의 성공적 달성을 위한 전력계통 안정화 핵심기술 개발 방향”, 「전기학회논문지」, 제67권 제2호, 2018, pp. 149~157.
  3. 노유림, “2017년 해외 전력산업 동향”, 한국전력거래소, 2017. 11.
  4. 산업통상자원부, “제 9차 전력수급기본계획(2020~2034)”, 2020. 12. 28, 산업통상자원부 공고 제2020-741호.
  5. 윤경수, “탄소배출권 거래제 도입과 탄소배출량을 고려한 유럽의 국가 간 전력교역 결정요인 분석”, 박사학위논문, 숭실대학교, 2021. 2.
  6. 윤경수‧박창수‧조성봉, “유럽의 탄소배출권 거래시장 도입에 따른 연결계통국가들의 전력 순수출 결정요인 변화 분석”, 「자원‧환경경제연구」, 제28권 제3호, 2019, pp. 385~413.
  7. 윤성학, “동북아 슈퍼그리드 전략 비교 연구”, 「러시아연구」, 제27권 제2호, 2017, pp. 201~225.
  8. 이현주, “패널 GLS분석을 통한 중국의 전력수요 결정요인 분석”, 「동북아경제연구」, 제25권 제3호, 2013, pp. 171~204.
  9. 한국에너지신문, “동북아 슈퍼그리드, 한‧중‧일‧러 청정 전력망 연계 에너지 수급 안정성 확보”, 2018. 5. 21.
  10. 한국전력공사, “균등화 발전원가 해외사례 조사 및 시사점 분석”, 2018. 1.
  11. Aboumahboub, T., K. Schaber, P. Tzscheutschler, and T. Hamacher, “Optimization of the utilization of renewable energy sources in the electricity sector,” Recent Advances in Energy & Environment, 2010, pp. 196~204. 10.24084/repqj08.207
  12. Anselin, L., “Model validation in spatial econometrics: a review and evaluation of alternative procedures,” International Regional Science Review, Vol. 11, No. 3, 1988, pp. 279~316.10.1177/016001768801100307
  13. Bäckman, A., The Nordic electricity system as a common-pool resource, Uppsala university, 2011.
  14. Bowen, B. H., F. T. Sparrow, and Z. Yu, “Modeling electricity trade policy for the twelve nations of the Southern African Power Pool (SAPP),” Utilities Policy, Vol. 8, No. 3, 1999, pp. 183~197.10.1016/S0957-1787(99)00019-3
  15. Child, M., C. Kemfert, D. Bogdanov, and C. Breyer, “Flexible electricity generation, gird exchange and storagefor the transition to a 100% renewable energy system in Europe,” Renewable Energy, Vol. 139, 2019, pp. 80~101.10.1016/j.renene.2019.02.077
  16. Dassisti, M., and L. Carnimeo, “Net modelling of energy mix among European Countries: A proposal for ruling new scenarios,” Energy, Vol. 39, No. 1, 2012, pp. 100~111.10.1016/j.energy.2011.07.006
  17. European Parliament, Understanding electricity markets in the EU, European Parliamentary Research Service, 2016.
  18. Fichaux, N., and J. Wilkes, Oceans of Opportunity : Harnessing Europe’s largest domestic energy resource, EWEA(European Wind Energy Association), 2009.
  19. Fuller, R. B., The world game: integrative resource utilization planning tool, Southern Illinois University in Carbondale, 1971.
  20. Geske, J., R. Green, and I. Staffell, “Elecxit: The cost of bilaterally uncoupling British-EU electricity trade,” Energy Economics, Vol. 85, 2020, 104599 p.10.1016/j.eneco.2019.104599
  21. Gnansounou, E., H. Bayem, D. Bednyagin, and J. Dong, “Strategies for regional integration of electricity supply in West Africa,” Energy Policy, Vol. 35, 2007, pp. 4142~4153.10.1016/j.enpol.2007.02.023
  22. Greenpeace and 3E, A north sea Electricity Grid[R]evolution : Electricity Output of Interconnected Offshore Wind Power: Avision of Offshore Wind Power Integration, Greenpeace, 2008.
  23. Heide, D., L. von Bremen, M. Greiner, C. Hoffmann, M. Speckmann, and S. Bofinger, “Seasonal optimal mix of wind and solar power in a future, highly renewable Europe,” Renewable Energy, Vol. 35, No. 11, 2010, pp. 2483~2489. 10.1016/j.renene.2010.03.012
  24. International Energy Agency (IEA), World Energy Outlook 2016, IEA, 2016.
  25. Jacopo, T., “Privatisation and cross-border electricity trade: From internal market to European Supergrid?,” Energy, Vol. 77, 2014, pp. 635~640.10.1016/j.energy.2014.09.057
  26. LeSage, J., and R. K. Pace, Introduction to Spatial Econometrics, CRC press, 2009.10.1201/9781420064254
  27. Montoya, L. G., B. Guo, D. Newbery, P. E. Dodds, G. Lipman, and G. Castagneto Gissey, “Measuring inefficiency in international electricity trading,” Energy Policy, Vol. 143, 2020, 111521 p.10.1016/j.enpol.2020.111521
  28. Newbery, D., G. Strbac, G. Pudjianto, and P. Noël, Benefits Of An Integrated European Energy Market, Booz&co, 2014.
  29. Newbery, D., M. G. Pollitt, R. A. Ritz, and W. Strielkowski, “Market design for a high-renewables European electricity system,” Renewable and Sustainable Energy Review, Vol. 91, 2018, pp. 695~707. 10.1016/j.rser.2018.04.025
  30. Ochoa, C., and A. van Ackere, “Winners and losers of market coupling,” Energy, Vol. 80, 2015, pp. 522~534. 10.1016/j.energy.2014.11.088
  31. ODYSSEE-MURE, https://www.odyssee-mure.eu/publications/efficiency-by-sector/households/heating-energy-consumption-by-energy-sources.html, Accessed 25 June 2021.
  32. Pariso, L., and M. Pelagatti, “Market coupling between electricity markets: theory and empirical evidence for the Italian-Slovenian interconnection,” Economia Politica, Vol. 36, 2019, pp. 527~548.10.1007/s40888-018-0126-2
  33. Pineau, P. O., A. Hira, and K. Froschauer, “Measuring international electricity integration: a comparative study of the power systems under the Nordic Council, MERCOSUR, and NAFTA,” Energy Policy, Vol. 32, No. 13, 2004, pp. 1457~1475.10.1016/S0301-4215(03)00111-3
  34. Ram, M., M. Child, A. Aghahosseini, and D. Bogdanov, “A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015-2030,” Journal of Cleaner Production, Vol. 199, 2018, pp. 687~704.10.1016/j.jclepro.2018.07.159
  35. Rogers, J. S., and J. G. Rowse, “Canadian interregional electricity trade: Analysing the gains from system integration during 1990–2020,” Energy Economics, Vol. 11, No. 2, 1989, pp. 105~118.10.1016/0140-9883(89)90003-0
  36. Schaber, K., F. Steinke, and T. Hamacher, “Transmission grid extensions for the integration of variablerenewable energies in Europe: Who benefits where?,” Energy Policy, Vol. 43, 2012, pp. 123~135. 10.1016/j.enpol.2011.12.040
  37. UNSPECIFIED, Energy sources, production costs and performance of technologies for power generation, heating and transport. Commission staff working document accompanying the communication on a second strategic energy review, EU Commission - SEC Document, 2008.
  38. Yu, X., “Regional cooperation and energy development in the Greater Mekong Subregion,” Energy Policy, Vol. 31, No. 12, 2003, pp. 1221~1234.10.1016/S0301-4215(02)00182-9
  39. Zakeri, B., J. Price, M. Zeyringer, I. Keppo, B. Mathiesen, and S. Syri, “The direct interconnection of the UK and nordic power market,” Energy, Vol. 162, 2018, pp. 1193~1204.10.1016/j.energy.2018.08.019
  40. Zappa, W., M. Junginger, and M. van den Broek, “Is a 100% renewable European power system feasible by 2050?,” Applied Energy, Vol. 233-234, 2019, pp. 1027~1050. 10.1016/j.apenergy.2018.08.109
Information
  • Publisher :Environmental and Resource Economics Review
  • Publisher(Ko) :자원 · 환경경제연구
  • Journal Title :자원·환경경제연구
  • Journal Title(Ko) :Environmental and Resource Economics Review
  • Volume : 30
  • No :3
  • Pages :435-469